
Sebastian Padó

Experiments with
category
representations



Collaborators in this work
• Abhijeet Gupta 

• Jen Sikos

• Gemma Boleda

• Matthijs Westera

• Katrin Erk

3



Categories
• “Categorization is the process of forming categories and 

assigning objects to them” (Murphy 2002)

• Fundamental to our perception, understanding of the world 

• Categories are crucial by allowing inferences

• Subsumption, Properties, Elementhood, …

• Arguably, crucial role in language
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Relevance for computational linguistics
• Distributional semantics (Harris 1954; Miller & Charles 1991):

Represent a word in terms of its occurrence contexts

• Conceptual successor: Word embeddings
5
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This presentation
• Use of word embeddings is directly related to categorization 

• Hypothesis: We can gain insights by examining word 
embeddings through the lens of categorization theory

• Two studies:

1. How do current embedding models relate to categorization 
theories?

2. How to properly learn categories from text, and the role of 
category-denoting nouns
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Study 1: Embeddings and categorization

Jennifer Sikos and Sebastian Padó 

Frame Identification as Categorization: Exemplars vs 
Protoypes in Embeddingland.

Proceedings of IWCS, pages 295-306. 
Gothenburg, Sweden, 2019.
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Theories of Categorization: Dimension 1
• Prototype Theory (Rosch 1975)

• Represent a category by a single
“essential” (pseudo-)instance

• Learning as instance pooling

• Exemplar Theory (Nosofsky 1986)

• Represent a category through the
distribution of its instances
• Learning as instance storage
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Prototype models support only 
linear decision boundaries

Exemplar models are more 
powerful

Prediction: Exemplar models are 
better if we have enough data 

points



Examples in Lexical Semantics
• Models of disambiguation through composition
• catch a ball vs. catch a disease vs. attend a ball

• Prototype model: 
Erk & Padó 2008

• Exemplar model: 
Erk & Padó 2010

• Result: Exemplar model better if parameters chosen well
9

Figure 1: Structured meaning representations for noun
ball and verb catch : lexical information plus expectations

that integrates lexical information with selectional
preferences. Then, we show how the SVS model pro-

vides a new way of computing meaning in context.

Representing lemma meaning. We abandon the
traditional choice of representing word meaning as
a single vector. Instead, we encode each word as
a combination of (a) one vector that models the
lexical meaning of the word, and (b) a set of vec-
tors, each of which represents the semantic expecta-
tions/selectional preferences for one particular rela-

tion that the word supports.1

The idea is illustrated in Fig. 1. In the representa-
tion of the verb catch, the central square stands for
the lexical vector of catch itself. The three arrows
link it to catch ’s preferences for its subjects (subj),
its objects (obj), and for verbs for which it appears
as a complement (comp�1). The figure shows the se-
lectional preferences as word lists for readability; in
practice, each selectional preference is a single vector
(cf. Section 4). Likewise, ball is represented by one
vector for ball itself, one for ball ’s preferences for its
modifiers (mod), one vector for the verbs of which it
is a subject (subj�1), and one for the verbs of which
is an object (obj�1).

This representation includes selectional prefer-
ences (like subj, obj, mod) exactly parallel to
inverse selectional preferences (subj�1, obj�1,
comp�1

). To our knowledge, preferences of the lat-

ter kind have not been studied in computational lin-
guistics. However, their existence is supported in
psycholinguistics by priming effects from nouns to
typical verbs (McRae et al., 2005).

Formally, let D be a vector space (the set of possi-

1We do not commit to a particular set of relations; see the
discussion at the end of this section.
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Figure 2: Combining predicate and argument via relation-

specific semantic expectations

ble vectors), and let R be some set of relation labels.

In the structured vector space (SVS) model, we rep-

resent the meaning of a lemma w as a triple

w = (v,R,R�1)

where v � D is a lexical vector describing the word
w itself, R : R � D maps each relation label onto
a vector that describes w’s selectional preferences,
and R�1 : R � D maps from role labels to vec-
tors describing inverse selectional preferences of w.

Both R and R�1 are partial functions. For example,
the direct object preference would be undefined for
intransitive verbs.

Computing meaning in context. The SVS model
of lemma meaning permits us to compute the mean-
ing of a word a in the context of another word b
in a new way, via their selectional preferences. Let
(va, Ra, R�1

a ) and (vb, Rb, R
�1
b ) be the representa-

tions of the two words, and let r � R be the relation

linking a to b. Then, we define the meaning of a and
b in this context as a pair (a�, b�) of vectors, where
a� is the meaning of a in the context of b, and b� the
meaning of b in the context of a:

a� =
�
va �R�1

b (r), Ra � {r}, R�1
a

�

b� =
�
vb �Ra(r), Rb, R

�1
b � {r}

� (4)

where v1�v2 is a direct vector combination function
as in traditional models, e.g. addition or component-
wise multiplication. If either Ra(r) or R�1

b (r) are
not defined, the combination fails. Afterwards, the ar-
gument position r is considered filled, and is deleted

from Ra and R�1
b .
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Theories of Categorization: Dimension 2
• Bottom-up vs. Top-down (Smith and Sloman 1994)

• Bottom-up: Categories shaped 
by data features (similarity)
• Unsupervised learning
• Embeddings: pre-training

• Top-down: Categories shaped 
by needs of tasks (theories)
• Supervised learning
• Embeddings: fine-tuning

10

Where are embedding-based 
classification models located in 

this space?

Does it pay off to change this?



Task: Frame Identification / Assignment
• Label a predicate instance with its frame
• Frame Semantics: Theory of meaning based on reference to 

situational category (frame) and ability to realize its participants

• Resource: Berkeley FrameNet 

• Task type: Lexical 
disambiguation in context

11



Research Hypotheses
• Let’s formulate models for frame identification as

{ exemplar | prototype) x {bottom-up | bottom-up+top-down}

• Hypotheses: We expect…
• …that exemplar models perform better 

(if we have enough data)
• …that top-down + bottom-up models perform better

(But not clear by how much)

12



Standard neural model

• Start: word embeddings

• Transformer contextualizes
word embeddings

• Finally, predict frame

• Classification via Softmax:
• This is a prototype model

• Frame f represented as embedding xf in final weight matrix M
13
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Experimental setup
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Figure 1: Four categorization models for frame identification, showing processing of the same predicate
in context (He got apples) across model architectures. Blue stands for frame COMMERCE BUY, light red
for frame STATEMENT. Triangles are instances, dots are prototypes.

metric, influences processing for this task. In the context of current embedding-based models, we treat the
fine-tuning procedure in BERT (cf. Section 2.2.1), where representations are fine-tuned using a small
amount of task-specific data as an approximate top-down effect on categorization.

3.1 Bottom-up (Pre-trained Embeddings)

Bottom-up frame identification models use only the pre-trained embeddings to predict the frame of a
lexical unit in context. The classification performed by these models shows how well frame classification
can be carried out by relying on general lexical semantic relatedness, without explicit knowledge about
frame-semantic grouping.

Bottom-up Exemplar. In exemplar theories, categorization proceeds by comparing a target instance
to prior seen instances, and the target is assigned the same class as its closest seen instance. To classify
a predicate in context, we perform single nearest neighbor classification: we compare its pre-trained,
contextualized embedding to all pre-trained, contextualized embeddings of predicates in the training set,
and assign the frame label of the closest training predicate. We use the standard embedding similarity
metric, cosine similarity. In the example in Figure 1 (top left), the nearest neighbor to the test instance He
got apples is I got one recently, which leads to the assignment of the COMMERCE BUY frame.

Bottom-up Prototype. In the prototype model, the frame categories are formed by building a summary
representation of all known instances in a category. We take advantage of the general effectiveness of
averaged representations and compute frame prototypes as the unweighted centroid of all pre-trained,
contextualized predicate embeddings for the frame’s training instances. Frame classification then assigns
a novel instance to the category of its most similar prototype. We again use cosine similarity, which is
identical (modulo normalization) to softmax classification. The example in Figure 1 (top right) shows
the prototypes of the two frames as dots, the “regions” of the two frames by background color, as well



Bottom-up exemplar
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Figure 1: Four categorization models for frame identification, showing processing of the same predicate
in context (He got apples) across model architectures. Blue stands for frame COMMERCE BUY, light red
for frame STATEMENT. Triangles are instances, dots are prototypes.

metric, influences processing for this task. In the context of current embedding-based models, we treat the
fine-tuning procedure in BERT (cf. Section 2.2.1), where representations are fine-tuned using a small
amount of task-specific data as an approximate top-down effect on categorization.

3.1 Bottom-up (Pre-trained Embeddings)

Bottom-up frame identification models use only the pre-trained embeddings to predict the frame of a
lexical unit in context. The classification performed by these models shows how well frame classification
can be carried out by relying on general lexical semantic relatedness, without explicit knowledge about
frame-semantic grouping.

Bottom-up Exemplar. In exemplar theories, categorization proceeds by comparing a target instance
to prior seen instances, and the target is assigned the same class as its closest seen instance. To classify
a predicate in context, we perform single nearest neighbor classification: we compare its pre-trained,
contextualized embedding to all pre-trained, contextualized embeddings of predicates in the training set,
and assign the frame label of the closest training predicate. We use the standard embedding similarity
metric, cosine similarity. In the example in Figure 1 (top left), the nearest neighbor to the test instance He
got apples is I got one recently, which leads to the assignment of the COMMERCE BUY frame.

Bottom-up Prototype. In the prototype model, the frame categories are formed by building a summary
representation of all known instances in a category. We take advantage of the general effectiveness of
averaged representations and compute frame prototypes as the unweighted centroid of all pre-trained,
contextualized predicate embeddings for the frame’s training instances. Frame classification then assigns
a novel instance to the category of its most similar prototype. We again use cosine similarity, which is
identical (modulo normalization) to softmax classification. The example in Figure 1 (top right) shows
the prototypes of the two frames as dots, the “regions” of the two frames by background color, as well

• Compute embeddings for predicates in context
• Do not use frame information (Bottom-up)

• Prediction for instance: Label of nearest 
neighbor instance (Exemplar)



Bottom-up prototype
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Figure 1: Four categorization models for frame identification, showing processing of the same predicate
in context (He got apples) across model architectures. Blue stands for frame COMMERCE BUY, light red
for frame STATEMENT. Triangles are instances, dots are prototypes.

metric, influences processing for this task. In the context of current embedding-based models, we treat the
fine-tuning procedure in BERT (cf. Section 2.2.1), where representations are fine-tuned using a small
amount of task-specific data as an approximate top-down effect on categorization.

3.1 Bottom-up (Pre-trained Embeddings)

Bottom-up frame identification models use only the pre-trained embeddings to predict the frame of a
lexical unit in context. The classification performed by these models shows how well frame classification
can be carried out by relying on general lexical semantic relatedness, without explicit knowledge about
frame-semantic grouping.

Bottom-up Exemplar. In exemplar theories, categorization proceeds by comparing a target instance
to prior seen instances, and the target is assigned the same class as its closest seen instance. To classify
a predicate in context, we perform single nearest neighbor classification: we compare its pre-trained,
contextualized embedding to all pre-trained, contextualized embeddings of predicates in the training set,
and assign the frame label of the closest training predicate. We use the standard embedding similarity
metric, cosine similarity. In the example in Figure 1 (top left), the nearest neighbor to the test instance He
got apples is I got one recently, which leads to the assignment of the COMMERCE BUY frame.

Bottom-up Prototype. In the prototype model, the frame categories are formed by building a summary
representation of all known instances in a category. We take advantage of the general effectiveness of
averaged representations and compute frame prototypes as the unweighted centroid of all pre-trained,
contextualized predicate embeddings for the frame’s training instances. Frame classification then assigns
a novel instance to the category of its most similar prototype. We again use cosine similarity, which is
identical (modulo normalization) to softmax classification. The example in Figure 1 (top right) shows
the prototypes of the two frames as dots, the “regions” of the two frames by background color, as well

• Compute embeddings for predicates in context
• Do not use frame information (bottom-up)
• Aggregate into frame prototypes

• Prediction for instance: Label of nearest prototype



BU+TD exemplar
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Figure 1: Four categorization models for frame identification, showing processing of the same predicate
in context (He got apples) across model architectures. Blue stands for frame COMMERCE BUY, light red
for frame STATEMENT. Triangles are instances, dots are prototypes.

metric, influences processing for this task. In the context of current embedding-based models, we treat the
fine-tuning procedure in BERT (cf. Section 2.2.1), where representations are fine-tuned using a small
amount of task-specific data as an approximate top-down effect on categorization.

3.1 Bottom-up (Pre-trained Embeddings)

Bottom-up frame identification models use only the pre-trained embeddings to predict the frame of a
lexical unit in context. The classification performed by these models shows how well frame classification
can be carried out by relying on general lexical semantic relatedness, without explicit knowledge about
frame-semantic grouping.

Bottom-up Exemplar. In exemplar theories, categorization proceeds by comparing a target instance
to prior seen instances, and the target is assigned the same class as its closest seen instance. To classify
a predicate in context, we perform single nearest neighbor classification: we compare its pre-trained,
contextualized embedding to all pre-trained, contextualized embeddings of predicates in the training set,
and assign the frame label of the closest training predicate. We use the standard embedding similarity
metric, cosine similarity. In the example in Figure 1 (top left), the nearest neighbor to the test instance He
got apples is I got one recently, which leads to the assignment of the COMMERCE BUY frame.

Bottom-up Prototype. In the prototype model, the frame categories are formed by building a summary
representation of all known instances in a category. We take advantage of the general effectiveness of
averaged representations and compute frame prototypes as the unweighted centroid of all pre-trained,
contextualized predicate embeddings for the frame’s training instances. Frame classification then assigns
a novel instance to the category of its most similar prototype. We again use cosine similarity, which is
identical (modulo normalization) to softmax classification. The example in Figure 1 (top right) shows
the prototypes of the two frames as dots, the “regions” of the two frames by background color, as well

• Compute embeddings for predicates in context
• Use frame information to fine-tune embeddings
• Same frame/different frame classifier

• Prediction: Label of nearest neighbor instance



BU+TD prototype
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Figure 1: Four categorization models for frame identification, showing processing of the same predicate
in context (He got apples) across model architectures. Blue stands for frame COMMERCE BUY, light red
for frame STATEMENT. Triangles are instances, dots are prototypes.

metric, influences processing for this task. In the context of current embedding-based models, we treat the
fine-tuning procedure in BERT (cf. Section 2.2.1), where representations are fine-tuned using a small
amount of task-specific data as an approximate top-down effect on categorization.

3.1 Bottom-up (Pre-trained Embeddings)

Bottom-up frame identification models use only the pre-trained embeddings to predict the frame of a
lexical unit in context. The classification performed by these models shows how well frame classification
can be carried out by relying on general lexical semantic relatedness, without explicit knowledge about
frame-semantic grouping.

Bottom-up Exemplar. In exemplar theories, categorization proceeds by comparing a target instance
to prior seen instances, and the target is assigned the same class as its closest seen instance. To classify
a predicate in context, we perform single nearest neighbor classification: we compare its pre-trained,
contextualized embedding to all pre-trained, contextualized embeddings of predicates in the training set,
and assign the frame label of the closest training predicate. We use the standard embedding similarity
metric, cosine similarity. In the example in Figure 1 (top left), the nearest neighbor to the test instance He
got apples is I got one recently, which leads to the assignment of the COMMERCE BUY frame.

Bottom-up Prototype. In the prototype model, the frame categories are formed by building a summary
representation of all known instances in a category. We take advantage of the general effectiveness of
averaged representations and compute frame prototypes as the unweighted centroid of all pre-trained,
contextualized predicate embeddings for the frame’s training instances. Frame classification then assigns
a novel instance to the category of its most similar prototype. We again use cosine similarity, which is
identical (modulo normalization) to softmax classification. The example in Figure 1 (top right) shows
the prototypes of the two frames as dots, the “regions” of the two frames by background color, as well

• We have already seen this: standard case
• Optimize classifier to predict frames for instances



Data
• FrameNet Release 1.5 full-text annotations (Das et al. 2014)
• ~1.2k frames
• 78 documents (BNC)
• Training/development: ~20k predicates

• Testing: ~4k predicates

• We treat predicates as known

• Evaluation measure: Accuracy 
(% of predicates labelled with correct frame)

19



Results at global level

• Results were state-of-the-art (at the time)

• Mostly due to use of recent embedding model BERT(-large)

• Bottom-up+top-down works best – unsurprisingly

• But: only significant improvement for prototype models
• Prototype model profits much more from top-down tuning

20

Model Full Lexicon Ambiguous Rare Unseen

R
es

ul
ts

fr
om

lit
er

at
ur

e

Das et al. (2014) 83.60 69.19 82.31 23.08
Hermann et al. (2014) 88.41 73.10 85.04 44.67
Hartmann et al. (2017) 87.63 73.8 NA NA
Yang and Mitchell (2017) 88.2 75.7 NA NA
Peng et al. (2018) 90.0 78.0 NA NA

Model Full Lexicon Ambiguous Rare Unseen

O
ur

W
or

k Bottom-up Exemplar 82.52 64.44 81.09 11.07
Bottom-up Prototype 84.67 69.18 83.68 09.59
Bottom-up + Top-down Exemplar 84.09 65.06 84.18 18.89
Bottom-up + Top-down Prototype 91.26 80.77 91.85 30.20

Table 1: Accuracy results for Frame Identification on Das et al. (2014) benchmark dataset (test partition)

data. The test set contains 144 unseen and 2,555 rare predicates.

5 Results

Table 1 shows the performance of the four models as well as prior results from recent literature. Regarding
the impact of the exemplar and prototype dimensions that we introduced in Section 3, we find that
the exemplar model does worse overall than the prototype model in both configurations (overall “Full
Lexicon” accuracy: 2% for bottom-up, 7% for bottom-up plus top-down). This indicates that the prototype
setup appears better suited to the task than the exemplar one, at least on the data we experimented with.
Second, we see a substantial effect of top-down processing (fine-tuning): 1.5% for exemplars, over 6%
for prototypes. The clear winner is the bottom-up plus top-down (fine-tuned) prototype model: with an
accuracy of 91.26%, it outperforms the previous state of the art (Peng et al., 2018). This shows that frame
categorization can indeed profit from task-based optimization. That being said, it is worth noting that
even the bottom-up prototype model with only generic pre-training performs at or above the level of the
supervised SEMAFOR model (Das et al., 2014) which incorporated linguistic and ontological features in
a log-linear model. Thus, the bottom-up vector space models do have a claim to robust performance.

Accuracy on “Ambiguous” predicates largely mirrors the patterns we find on “Full Lexicon” accuracy.
They bolster the interpretation that both prototype representation and fine-tuning lead to clear gains.
Results on “Rare” and “Unseen” predicates are more difficult to compare due to lack of reported results
(marked as NA). The numbers for “Rare”, again, seem to follow the “Full Lexicon” trend, and outperform
the state of the art. The results for the “Unseen” category do so too, but are below the previously reported
results. The reason is that Das et al. (2014) employ additional processing to unseen predicates based on a
context similarity graph. For simple supervised classification without the extra component, comparable to
our 30.20% setting, they report an Accuracy of 23.08%.

5.1 Sentence Length

Next, we aim to determine how much the sentence length affects predictions of classes in the bottom-up
versus the bottom-up plus top-down models. Results are shown in Figure 2. We find that the performance
of the bottom-up models declines as sentence length increases, and the opposite is seen in the top-down
prototype model.

The most natural explanation for this pattern starts from the realization that the BERT model incorpo-
rates long-range dependencies via its self-attention mechanisms. That is, these long-range dependencies,
coupled with the bidirectionality in the BERT model, introduces a rich notion of context. However, in the

full-text annotations for fair comparison.



Results at frame level
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Figure 2: Impact of sentence length on accuracy

Frame BU+TD BU+TD BU BU
Prototype Exemplar Prototype Exemplar

CAPABILITY 1.00 0.73 0.48 0.73
POSSESSION 1.00 0.94 0.92 0.81
WEAPON 1.00 0.97 0.98 1.00
LOCATIVE RELATION 0.97 0.84 0.89 0.79
TEMPORAL COLLOCATION 0.89 0.76 0.76 0.71

Table 2: Accuracies for top 5 frames from Bottom-up+Top-down Prototype model across all four model

bottom-up models these self-attention weights have the potential to introduce noise for long sentences,
which is exactly what we observe. In contrast, fine-tuning of the self-attention weights can apparently
turn long sentences into an asset by providing rich context hints for improved frame classification.

The outlier in this analysis is the fine-tuned bottom-up plus top-down exemplar model whose perfor-
mance fluctuates between the fine-tuned prototype model and the bottom-up models. Given the analysis
of the previous paragraph, this may not be surprising: the supervision provided to the fine-tuned exemplar
model is less informative than that for the prototype model (cf. Section 3.2): the exemplar supervision
does not name the frame(s) involved, and only provides information for one predicate pair in a potentially
long sequence. Arguably, this makes it much more difficult for BERT to properly adapt its self-attention
weights.

5.2 Frame-level and Predicate-level Analysis

We now look at the most accurate frames and predicates from our best model and compare the accuracies
for these inputs across our four models. This analysis gives us insight regarding what types of semantic
information are already learned by the bottom-up models versus the knowledge that is gained by learning
frame-specific semantics in the top-down setting.

Table 2 shows the analysis at the frame level. The best model assigns three frames perfectly. For one
of them, CAPABILITY, there is a dramatic performance gap, where the other models show accuracies of
0.73 and less. This frame includes lexical units such as can.v and able.a, which are both frequent and
unspecific and therefore somewhat difficult to learn without frame-specific tuning. The same is true for
three other frames, POSSESSION, and TEMPORAL COLLOCATION, and LOCATIVE RELATION, which
also have a high number of frequent, ambiguous predicates including modals and prepositions (have.v,
in.prep, on.prep). The final frame, WEAPON, behaves rather differently in that the models perform almost
equally well. Since the predicates in this frame form a coherent topic and tend to be low in ambiguity
(bomb.n, missile.n, shotgun.n), they are quite easily learned with only generalized embeddings.

The analysis at the predicate level is shown in Table 3. We see a distinction very similar to the frame

• Some frames very hard to get right

• Common denominators: ambiguity and abstractness
• Verb can evokes PRESERVING, CAPABILITY, LIKELIHOOD, POSSIBILITY

• Distinctions not well represented in non-fine-tuned embedding space



Our Interpretation of Study 1
• Traditional benefit of 

exemplar models: 
non-linear decision 
boundaries
• Implicit assumption: Representations are (largely) fixed

• Neural networks models do representation learning
• If boundary is not linear, fine-tuning will make it linear

• Then, a prototype model is sufficient

• Exemplar model could do same, but is hampered by sparsity in 
this experiment (~5 instances/class): your mileage may vary!

22

xx x

x

x
x

x
x o o o

o

o
o

o oo

o
x o

xx x

x

x
x

x
x o o o

o

o
o

o oo

o



Matthijs Westera, Abhijeet Gupta, Gemma Boleda and 
Sebastian Padó

Distributional models of category concepts based on 
names of category members.

Cognitive Science, 45(9):e13029, 2021.

Study 2: How to build word embeddings
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Category representation

• Fairly common assumption in distributional semantics: 
Embedding of word x is representation of category X
• Our focus: nouns – “noun-based model”

24

sweet fast

orange 5 1

apple 4 1

car 1 20

Corpus
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fast
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orange sweet

sweet orange
it went bad fast

Categorization:
instances à senses

Categorization:
senses à semantic classes



Is this reasonable?

• Implicit assumption: Instances of a word contribute 
informatively towards denoted category. True?

• Word sense

• Informativity

• Speaker intent

25

Grass is green

Elephant in the room

Fotograf vs. Fotografin
(generic/male  vs. female photographer)



Alternative: Entity-based model
• Categories are also associated with names of „public“ 

entities that instantiate them
• Category = prototype of embeddings of named entities

• Conceptual advantages over the noun-based model:
• Instances more properly „category members“ than mentions of

the category noun

• Names are rigid designators: less interference from pragmatics
26

~lawyer = ~W. Jennings + ~A. G. Hays + . . .

~artist = ~S. Dali + ~J. S. Bach + . . .

rel(lawyer, artist) = cos( ~lawyer, ~artist)
<latexit sha1_base64="Iivrrz7nSyOX9EV7uy/tlwHQNGs="></latexit>

Could also be framed as exemplar model. 
We did not investigate this  -- sparsity.
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Names, nouns are used differently

name
name c.
noun

name
name c.
noun



Research Question and Hypothesis
• Question: How well do name-based embeddings do in 

accounting for category-related knowledge?

• Experiment 1: Category relatedness

• Experiment 2: Category membership

• Hypothesis: Better than noun-based embeddings

28



A Data for Instantiation
• Set of pairs

(instance, 
category)

• Source: WordNet
• Pairs: instance

hypernym
relation
• Categories

are synsets

29

Domain No. of 
Pairs

No. of 
Entities

No. of 
Cats

Example pair

Person 2408 2076 98 Emmy Noether, 
mathematician

Location 1665 1436 26 Oaxaca, city

Object 547 546 18 Nile, river

Communicat
ion

48 48 5 Hail Mary, 
prayer

Artifact 45 45 3 Cornell, 
university

Act 43 43 4 Alamo, siege

Other 34 34 5 Paleocene, 
epoch

Total unique 4790 4180 159



Experiment 1: Category relatedness
• Research question: Which model can account better for

human judgments of category relatedness?

• Turns out there is no dataset for category relatedness

• Build one via crowdsourcing experiment
• Ranking task for category pairs

• About 50/50 within-domain and across-domain pairs

30

Gupta, Westera, Boleda, Padó Distributional Semantics meets prototype theory

Figure 1

one third of our 986 category pairs, seeing each pair of categories only once as the target
pair, with different comparison pairs across participants.

The binary choice paradigm made it easy to design filler items for quality control,
namely, items where one pair is very related and another is very unrelated. We composed
90 such items – 15 for each of the six tasks a single participant may work on – by taking
90 pairs of categories that were close together in distributional space, and 90 pairs that
were far apart, and combining them. We manually went through the resulting control
items to verify that, at least according to our intuitions, the intended pair was indeed
clearly the most related. Moreover, when processing the results we discarded any fillers
where less than 90% of participants agreed with our own judgment. This resulted in the
removal of X fillers, while still leaving at least Y fillers per participant, enough for reliable
quality control.Based on the fillers thus deemed reliable, we then discarded the data of double

check these
numbers

double
check these
numbers

W workers with accuracy on the fillers less than Z%, running another crowdsourcing
round in order to mostly complete the resulting data gaps.

Report
resulting
numbers.

Report
resulting
numbers.

1.3 Task instructions

The full instructions are shown in figure ??. The task was framed as one of judging
category relatedness, instead of word relatedness, although the latter is more common.
Judging category relatedness is arguably what people do even when you ask them
to judge word relatedness: they settle on a prototypical interpretation of the words –
categories they are likely used to express – and judge relatedness accordingly. Different
authors have pointed this out for the ‘native speaker intuitions’ on which for instance
formal semantics relies: our intuitions about a given word or sentence tends to reflect
what is meant by it on its typical usage (e.g., ? ). Moreover, where multiple interpretations more

citations
more
citationsare available and sufficiently prototypical, this gives people space to, consciously or
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Experiment 1: Embedding computation
• Embedding space: static Google News embeddings

• Noun-based model
• Category = noun embedding 

• Name-based model
• Obtain list of n names from our resource

• Category = prototype of name embeddings
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Experiment 1: Model comparison
• Task: Predict relatedness for category pairs

• Evaluation: Ranking correlation (Spearman)

• Noun-based model:
Performance: 𝛒 = 0.56
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Experiment 1: Model comparison

33

• Name-based model
• Performance improves with

number of names

• Better than noun-based
model from 3 names

• Best model at 𝛒 = 0.74
• Improvement in particular

on within-domain judgments



Experiment 2: Category membership
• Task: Given a pair of embeddings, is E1 instance of E2?

• Balanced 
evaluation
dataset:

• Mismatching categories drawn within- or across-domain

• Decision architectures
• Weakly supervised option : Cosine between embeddings

• Fully supervised option: 1 hidden layer + classification layer

• Same embeddings as in Exp 1: Noun-based, name-based
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entity-match cat.   Göteborg-town
entity-mismatch cat.  Göteborg-cat
cat.-entity    town-Göteborg
entity-entity   Göteborg-Oslo



Experiment 2: Results (more in paper)

• Cos not great: representation  important

• Name-based model substantially better than noun-based

• Particular improvement for within-domain confounders
35

Noun-based Name-based
Dataset BL Cos NN Cos NN

Within- and across-
domain confounders

0.25 0.43 0.74 0.59 0.85

Within-domain 
confounders

0.25 0.41 0.51 0.55 0.76



Our Interpretation of Study 2
• Category nouns are suboptimal category representations
• Ambiguity, pragmatics influencing usage

• Prototypes of instantiating entities work better
• But why?

Syntactic effect (CN vs. PN)? 
Semantic type effect (entity/category)?
Specificity effect?

• NB. Our model requires „public named entities“
• Not many per concept, but don‘t exist for many concepts
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Comparison 
experiments e.g. 

with 
super/subordinate 

categories?



Last Words
• Much momentum in NLP has recently come from ML
• Good ML goes hand in hand with domain understanding

• The domain of language fundamentally incorporates 
categories and categorization
• It is worth examining our models from this angle

• That being said, in ML simplicity often wins (à scaling)
• Encoders/LLMs: next-word prediction/masked token objective

• If we want better models, we need to ask if/how these ideas 
can be integrated in (on top?) current approaches
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Thank you!

e-mail
phone +49 (0) 711 685-
www.
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Institut für Maschinelle
Sprachverarbeitung

Data & implementations should be available for
all studies – see papers or ask me

Sebastian Padó

81400
ims.uni-stuttgart.de/~pado
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